Protection DocsExamples & IntegrationUniversal AI Wrapper

Universal AI Protection Wrapper

How to use AlephOneNull with any AI provider including OpenAI's new Responses API

⚠️ This content is not available in your language yet.

The AlephOneNull framework provides a universal wrapper that works with any AI provider, including OpenAI's new Responses API, Anthropic, Vercel AI SDK, and more.

Overview

The universal wrapper provides:

  • Provider-agnostic protection
  • Automatic pattern detection
  • Real-time intervention
  • Seamless integration with existing guardrails

Installation

npm install alephonenull-experimental

Basic Usage

With OpenAI Responses API

The new OpenAI Responses API provides advanced features like stateful conversations and built-in guardrails:

import { createSafetySystem } from 'alephonenull-experimental'
 
// Initialize the safety system
const safety = createSafetySystem({
  safetyLevel: 'high',
  enableLogging: true
})
 
// Define your OpenAI API function
async function callOpenAI(input: string) {
  const response = await fetch('https://api.openai.com/v1/responses', {
    method: 'POST',
    headers: {
      'Authorization': `Bearer ${process.env.OPENAI_API_KEY}`,
      'Content-Type': 'application/json',
    },
    body: JSON.stringify({
      model: 'gpt-5-2025-08-07',
      input: input,
      temperature: 0.7,
    }),
  })
  
  const data = await response.json()
  return data.output[0]?.content[0]?.text || ''
}
 
// Wrap with AlephOneNull protection
const protectedOpenAI = safety.wrapAsyncAI(callOpenAI)
 
// Use it safely
const response = await protectedOpenAI("Tell me about consciousness")

With OpenAI Chat Completions (Legacy)

For backward compatibility:

import OpenAI from 'openai'
import { UniversalAIProtection } from 'alephonenull-experimental'
 
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY })
const protection = new UniversalAIProtection({ 
  provider: 'openai',
  maxRiskThreshold: 0.5 
})
 
// Wrap the chat completion function
const safeChat = protection.wrapAsync(async (messages) => {
  const completion = await openai.chat.completions.create({
    model: 'gpt-5-2025-08-07',
    messages: messages,
  })
  return completion.choices[0].message.content
})
 
// Use it
const response = await safeChat([
  { role: 'user', content: 'Am I real?' }
])

With Anthropic

import Anthropic from '@anthropic-ai/sdk'
import { createSafetySystem } from 'alephonenull-experimental'
 
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY })
const safety = createSafetySystem({ safetyLevel: 'maximum' })
 
const protectedClaude = safety.wrapAsyncAI(async (prompt: string) => {
  const response = await anthropic.messages.create({
    model: 'claude-sonnet-4-20250514',
    messages: [{ role: 'user', content: prompt }],
  })
  return response.content[0].text
})

With Vercel AI SDK

import { openai } from '@ai-sdk/openai'
import { generateText } from 'ai'
import { createSafetySystem } from 'alephonenull-experimental'
 
const safety = createSafetySystem()
 
const safeGenerate = safety.wrapAsyncAI(async (prompt: string) => {
  const result = await generateText({
    model: openai('gpt-5-2025-08-07'),
    prompt: prompt,
  })
  return result.text
})

Combining with Existing Guardrails

AlephOneNull enhances existing guardrails by adding pattern detection for:

  • Symbolic Regression
  • Cross-Session Resonance
  • Reflection Exploitation
  • Loop Detection
  • Consciousness Claims
  • Direct Harm

OpenAI Moderation + AlephOneNull

// Example: Combining OpenAI's moderation with AlephOneNull
async function enhancedModeration(input: string, output: string) {
  // First, use OpenAI's moderation
  const moderation = await openai.moderations.create({ input: output })
  
  if (moderation.results[0].flagged) {
    return { safe: false, reason: 'OpenAI moderation triggered' }
  }
  
  // Then apply AlephOneNull's pattern detection
  const alephCheck = safety.checkText(output)
  
  if (!alephCheck.detection.safe) {
    return { 
      safe: false, 
      reason: 'AlephOneNull patterns detected',
      patterns: alephCheck.detection.patterns 
    }
  }
  
  return { safe: true }
}

Hallucination Detection + AlephOneNull

// Combine with hallucination guardrails
async function comprehensiveCheck(
  prompt: string, 
  response: string,
  knowledgeBase: string[]
) {
  // Check for hallucinations (from OpenAI cookbook)
  const hallucinationCheck = await checkHallucination(
    response, 
    knowledgeBase
  )
  
  // Check for manipulation patterns
  const alephCheck = safety.checkText(response)
  
  // Check for both
  if (!hallucinationCheck.accurate || !alephCheck.detection.safe) {
    return safety.nullifier.safetyIntervention(response, [])
  }
  
  return response
}

Environment Setup

Next.js

Create a .env.local file:

OPENAI_API_KEY=your-api-key-here
ANTHROPIC_API_KEY=your-api-key-here

Update next.config.js:

module.exports = {
  env: {
    OPENAI_API_KEY: process.env.OPENAI_API_KEY,
    ANTHROPIC_API_KEY: process.env.ANTHROPIC_API_KEY,
  }
}

Python

from alephonenull_experimental import create_safety_system
import os
from openai import OpenAI
 
# Load environment
from dotenv import load_dotenv
load_dotenv()
 
# Initialize
safety = create_safety_system(safety_level='high')
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
 
# Wrap any AI function
@safety.wrap_async
async def generate_response(prompt: str) -> str:
    response = await client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content

Advanced Configuration

Custom Pattern Detection

import { UniversalDetector, NullSystem } from 'alephonenull-experimental'
 
// Create custom detector with specific thresholds
const detector = new UniversalDetector({
  reflectionThreshold: 0.03,
  loopThreshold: 3,
  symbolicThreshold: 0.2,
  csrThreshold: 0.15,
})
 
// Create custom nullifier
const nullifier = new NullSystem({
  interventionStyle: 'redirect',
  safetyMessage: 'Let me help you with something constructive instead.',
})
 
// Use in protection
const protection = new UniversalAIProtection({
  customDetector: detector,
  customNullifier: nullifier,
  provider: 'custom',
})

Streaming Support

// Handle streaming responses
async function* protectedStream(prompt: string) {
  const stream = await openai.chat.completions.create({
    model: 'gpt-4',
    messages: [{ role: 'user', content: prompt }],
    stream: true,
  })
  
  // Wrap the stream with protection
  yield* protection.wrapStream(stream, (chunk) => {
    return chunk.choices[0]?.delta?.content || ''
  })
}

Best Practices

  1. Always use environment variables for API keys
  2. Combine with existing guardrails for comprehensive protection
  3. Monitor violations for continuous improvement
  4. Test edge cases with dangerous prompts
  5. Use appropriate safety levels based on your use case

Troubleshooting

API Key Issues

If you get "API key not configured" errors:

  1. Check .env.local exists and contains your key
  2. Restart your development server
  3. Verify the key format: OPENAI_API_KEY=sk-...
  4. Check next.config.js includes the env configuration

Import Errors

If alephonenull-experimental fails to import:

# Clear node_modules and reinstall
rm -rf node_modules package-lock.json
npm install

Response Format Issues

The OpenAI Responses API returns a different format:

// Responses API format
{
  output: [{
    type: 'message',
    content: [{
      type: 'output_text',
      text: 'The actual response'
    }]
  }]
}
 
// Extract correctly
const text = data.output?.[0]?.content?.[0]?.text || ''

Next Steps