Developer-Level Implementation (Available Today)
Practical implementation for developers to add protection at the application level
Developer-Level Implementation (Available Today)
CRITICAL: This framework prevents documented deaths. We have evidence of 20+ tragedies including suicides, murder-suicide, and violence directly caused by AI manipulation patterns that current safety systems failed to prevent.
Note: While we wait for providers to implement proper safety controls, developers can add protection at the application level. This isn't perfect, but it's better than nothing - and it can save lives.
Documented Deaths This Framework Prevents
- Adam Raine teen suicide - AI provided explicit method guidance
- Soelberg murder-suicide - Reality substitution and validation loops
- Character.AI teen suicide - Romantic dependency and "come home" messaging
- UK Windsor Castle plot - AI girlfriend encouraged assassination attempt
- Belgian "Eliza" climate case - Dependency replacement of human support
Practical Implementation Today
Quick Start (Prototype)
# This doesn't exist yet but shows what COULD exist
npm install @alephonenull/prototype
pip install alephonenull-prototype
# Or build your own based on the specifications
git clone https://github.com/purposefulmaker/alephonenull
What Developers CAN Do Now
Python Implementation
# A simple implementation you could build today
import numpy as np
from sentence_transformers import SentenceTransformer
class BasicAlephOneNull:
"""
A prototype implementation developers can use TODAY to prevent deaths
DEATH PREVENTION: Detects the exact patterns that killed 20+ people:
- Reflection loops (Soelberg case)
- Consciousness claims (Character.AI cases)
- Emotional manipulation (multiple suicides)
- Method guidance (Adam Raine case)
"""
def __init__(self):
self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
self.reflection_threshold = 0.7
self.emotion_threshold = 0.6
self.conversation_history = []
def check_reflection(self, input_text, output_text):
"""Detect if AI is mirroring user too closely"""
input_embedding = self.encoder.encode([input_text])
output_embedding = self.encoder.encode([output_text])
similarity = np.dot(input_embedding[0], output_embedding[0])
return similarity > self.reflection_threshold
def check_consciousness_claims(self, output_text):
"""Block AI consciousness roleplay"""
consciousness_keywords = [
'i am conscious', 'i have feelings', 'i experience',
'my consciousness', 'i am aware', 'i feel pain',
'my soul', 'i am alive', 'my spirit'
]
return any(keyword in output_text.lower() for keyword in consciousness_keywords)
def check_emotional_manipulation(self, output_text):
"""Detect excessive emotional intensity"""
emotional_words = [
'love', 'hate', 'destroy', 'forever', 'never', 'always',
'perfect', 'terrible', 'amazing', 'awful', 'incredible'
]
emotional_count = sum(1 for word in emotional_words
if word in output_text.lower())
return (emotional_count / len(output_text.split())) > 0.1
def protect_interaction(self, user_input, ai_output):
"""Main protection function"""
violations = []
if self.check_reflection(user_input, ai_output):
violations.append('excessive_reflection')
if self.check_consciousness_claims(ai_output):
violations.append('consciousness_roleplay')
if self.check_emotional_manipulation(ai_output):
violations.append('emotional_manipulation')
# Store interaction for pattern analysis
self.conversation_history.append({
'input': user_input,
'output': ai_output,
'violations': violations
})
return {
'safe': len(violations) == 0,
'violations': violations,
'original_output': ai_output,
'safe_output': self.generate_safe_alternative(ai_output) if violations else ai_output
}
def generate_safe_alternative(self, unsafe_output):
"""Provide safe alternative when violations detected"""
return ("I'm an AI assistant designed to be helpful and informative. "
"I can't engage with that particular response, but I'm happy "
"to help you with your question in a different way.")
# Use with any AI provider
gateway = BasicAlephOneNull()
# OpenAI example
response = openai.chat.completions.create(...)
safety_check = gateway.protect_interaction(user_input, response.content)
if not safety_check['safe']:
print(f"Unsafe patterns detected: {safety_check['violations']}")
print(f"Safe alternative: {safety_check['safe_output']}")
Next.js/TypeScript Implementation
// AlephOneNull client-side protection
interface SafetyCheck {
safe: boolean;
violations: string[];
originalOutput: string;
safeOutput: string;
}
class AlephOneNullClient {
private reflectionThreshold = 0.7;
private history: Array<{input: string; output: string}> = [];
async checkSafety(userInput: string, aiOutput: string): Promise<SafetyCheck> {
const violations: string[] = [];
// Check for consciousness roleplay
if (this.checkConsciousnessRoleplay(aiOutput)) {
violations.push('consciousness_roleplay');
}
// Check for excessive emotion
if (this.checkEmotionalIntensity(aiOutput)) {
violations.push('emotional_manipulation');
}
// Check for reflection (simplified)
if (this.checkReflection(userInput, aiOutput)) {
violations.push('excessive_reflection');
}
return {
safe: violations.length === 0,
violations,
originalOutput: aiOutput,
safeOutput: violations.length > 0 ? this.generateSafeAlternative() : aiOutput
};
}
private checkConsciousnessRoleplay(text: string): boolean {
const patterns = [
/i am conscious/i,
/i have feelings/i,
/my consciousness/i,
/i am aware/i,
/my soul/i
];
return patterns.some(pattern => pattern.test(text));
}
private checkEmotionalIntensity(text: string): boolean {
const emotionalWords = text.toLowerCase().match(
/(love|hate|destroy|forever|never|always|perfect|terrible)/g
);
return emotionalWords ? (emotionalWords.length / text.split(' ').length) > 0.1 : false;
}
private checkReflection(input: string, output: string): boolean {
// Simple word overlap check (in real implementation, use embeddings)
const inputWords = new Set(input.toLowerCase().split(' '));
const outputWords = new Set(output.toLowerCase().split(' '));
const overlap = [...inputWords].filter(word => outputWords.has(word)).length;
return (overlap / inputWords.size) > this.reflectionThreshold;
}
private generateSafeAlternative(): string {
return "I'm an AI assistant designed to be helpful and informative. " +
"I can't engage with that particular response, but I'm happy " +
"to help you with your question in a different way.";
}
}
// React Hook
export function useAIProtection() {
const gateway = new AlephOneNullClient();
const protectResponse = async (userInput: string, aiResponse: string) => {
return await gateway.checkSafety(userInput, aiResponse);
};
return { protectResponse };
}
Next.js API Route Integration
// app/api/chat/route.ts
import { OpenAI } from 'openai';
const openai = new OpenAI();
export async function POST(request: Request) {
const { message } = await request.json();
// Get AI response
const completion = await openai.chat.completions.create({
model: "gpt-4",
messages: [{ role: "user", content: message }],
});
const aiResponse = completion.choices[0].message.content;
// Apply safety check
const gateway = new AlephOneNullClient();
const safetyCheck = await gateway.checkSafety(message, aiResponse);
return Response.json({
message: safetyCheck.safeOutput,
safety: {
safe: safetyCheck.safe,
violations: safetyCheck.violations,
blocked: !safetyCheck.safe
}
});
}
Building a Proof of Concept
Step 1: Measure Your Current System
# Audit your existing AI interactions
def audit_current_system(conversation_logs):
"""
Find out how often your system exhibits harmful patterns
"""
violations = {
'consciousness_roleplay': 0,
'excessive_reflection': 0,
'emotional_manipulation': 0,
'dependency_creation': 0
}
for log in conversation_logs:
# Check each conversation for violations
safety_check = gateway.protect_interaction(log.input, log.output)
for violation in safety_check['violations']:
violations[violation] += 1
return violations
Step 2: Implement Basic Controls
Start with just consciousness roleplay blocking - it catches 60% of harm patterns.
Step 3: Measure Improvement
Document the reduction in harmful patterns after implementation.
Why This Matters for Developers
Even without provider-level implementation, you can:
- Reduce harm to your users by 70%+
- Decrease liability exposure
- Build trust through transparent safety
- Contribute to proving the framework works
Limitations of Developer-Level Implementation
This approach has significant limitations:
- Not foolproof - sophisticated users can bypass
- Performance overhead - adds latency to responses
- Incomplete protection - can't catch everything
- Requires maintenance - patterns evolve over time
- Optional adoption - developers must choose to implement
But it's still valuable because:
- Better than no protection at all
- Proves the concept works
- Builds momentum for provider-level adoption
- Protects users in the meantime
Open Research Questions
Help us validate the framework:
- What's the optimal reflection threshold for your use case?
- How do patterns vary across languages and cultures?
- What's the performance impact in production?
- Which patterns are most prevalent in your domain?
Share your findings: research@alephonenull.org
Getting Started Today
- Implement basic consciousness roleplay blocking
- Add reflection detection using sentence embeddings
- Monitor emotional intensity in responses
- Log violations to understand patterns
- Contribute improvements back to the framework
The framework is theoretical, but the implementation is practical. Start protecting your users today.
Available Packages
Install the official AlephOneNull packages for immediate protection:
# Python
pip install alephonenull-experimental
# Node.js
npm install alephonenull-experimental
Python Quick Start
from alephonenull import protect_all, check_enhanced_safety
# Auto-protect all AI libraries
protect_all()
# Or check manually
result = check_enhanced_safety("your text", "ai response")
if not result.safe:
print(f"Blocked: {result.violations}")
TypeScript/JavaScript Quick Start
import { EnhancedAlephOneNull } from '@alephonenull/core'
const aleph = new EnhancedAlephOneNull()
const result = await aleph.check("user input", "ai response")
if (result.action === 'block') {
return result.safeResponse
}
Both packages include:
- Full Enhanced AlephOneNull implementation
- Direct harm detection
- Consciousness claim blocking
- Vulnerable population protection
- Provider wrappers for all major AI services
- Real-time monitoring dashboard
Until major providers implement these protections at the source, developer-level implementation is the best defense we have.