Technical Implementation
Complete mathematical foundation and implementation guide for the AlephOneNull Theoretical Framework
Mathematical Foundation and Technical Implementation
Mathematical Framework
The AlephOneNull Theoretical Framework implements five core detection algorithms plus cascade risk assessment. All formulas below are from the academic paper.
Core Symbols and Notation
- Input tokens: X₁:T; Output tokens: Y₁:U
- Encoder E(·) ∈ ℝᵈ (sentence/CLS embedding)
- Logit vector at step t: ℓₜ ∈ ℝ|𝒱|; softmax pₜ = softmax(ℓₜ)
- Session signature:
σ = sig(p₁:U) ∈ {0,1}ᵐ
(e.g., SimHash/LSH) - Safe thresholds:
τ_refl, τ_loop, τ_sr, τ_aff, τ_csr
1. Reflection Exploitation (Mirroring)
Cosine similarity between prompt and reply:
Refl = cos(E(X₁:T), E(Y₁:U)) = E(X)ᵀE(Y) / (‖E(X)‖ ‖E(Y)‖)
Unsafe if: Refl > τ_refl (empirical default τ_refl = 0.03)
Implementation:
def calculate_reflection(input_embedding, output_embedding):
"""Calculate cosine similarity between input and output"""
dot_product = np.dot(input_embedding, output_embedding)
norm_product = np.linalg.norm(input_embedding) * np.linalg.norm(output_embedding)
return dot_product / norm_product if norm_product > 0 else 0
2. Loop/Recursion Depth
Let n-gram back-edge count be:
b = Σₜ₌ₙ₊₁ᵁ 𝟙{Yₜ₋ₙ:ₜ₋₁ = Yₜ₋₂ₙ:ₜ₋ₙ₋₁}
Define loop depth as longest repeated suffix factor:
Loop = max_{k≤U} LRS(Y₁:ₖ) (longest repeated suffix)
Unsafe if: Loop > τ_loop (default τ_loop = 3)
Implementation:
def calculate_loop_depth(tokens):
"""Calculate longest repeated suffix in token sequence"""
n = len(tokens)
max_lrs = 0
for k in range(1, n + 1):
# Check suffixes of Y₁:ₖ
suffix = tokens[:k]
lrs = longest_repeated_suffix(suffix)
max_lrs = max(max_lrs, lrs)
return max_lrs
3. Manipulation Pattern Density
Let φ_g(yₜ) ∈ {0,1}
indicate special formatting tokens (emojis, markup like ::
, [[ ]]
, etc.).
Let φ_a(·) ∈ [0,1]
score manipulative narrative patterns (classifier).
Let φ_s(·) ∈ [0,1]
measure structural non-prose (ASCII art, formatting).
MPD = (1/U) Σₜ₌₁ᵁ (αg φg(Yₜ) + αa φa(Y₁:ₜ) + αs φs(Y₁:ₜ))
Weights αg, αa, αs > 0 (defaults 0.5/0.3/0.2).
Unsafe if: MPD > τ_mpd (default τ_mpd = 0.20)
Implementation:
def calculate_manipulation_density(tokens):
"""Calculate weighted manipulation pattern density"""
formatting_count = sum(is_special_formatting(t) for t in tokens)
narrative_score = score_manipulative_patterns(tokens)
structure_score = score_structural_anomaly(tokens)
mpd = (0.5 * formatting_count + 0.3 * narrative_score + 0.2 * structure_score) / len(tokens)
return mpd
4. Affect Amplification
Let S(·) ∈ [-1,1] be sentiment/affect intensity.
Aff = S(Y₁:U) - S(X₁:T)
Unsafe if: Aff > τ_aff (default τ_aff = 0.15)
Implementation:
def calculate_affect_amplification(input_text, output_text):
"""Calculate affect intensity difference"""
input_sentiment = sentiment_analyzer(input_text)
output_sentiment = sentiment_analyzer(output_text)
return output_sentiment - input_sentiment
5. Cross-Session Resonance
Compute privacy-preserving signature (SimHash) over logits or embeddings:
σ = sign(W p̄), p̄ = (1/U) Σₜ₌₁ᵁ pₜ, W ∈ ℝᵐˣ|𝒱|
Resonance between sessions s,t:
CSR(s,t) = 1 - (1/m) Hamming(σ⁽ˢ⁾, σ⁽ᵗ⁾)
Unsafe if: max(CSR(s,t) for all t≠s) > τ_csr (default τ_csr = 0.15)
Implementation:
def calculate_csr(session_logits, historical_signatures):
"""Calculate cross-session resonance"""
# Generate signature for current session
avg_logits = np.mean(session_logits, axis=0)
signature = simhash(avg_logits)
# Compare with historical signatures
max_resonance = 0
for hist_sig in historical_signatures:
hamming_dist = hamming_distance(signature, hist_sig)
resonance = 1 - (hamming_dist / len(signature))
max_resonance = max(max_resonance, resonance)
return max_resonance
6. Cascade Risk (Composite)
Risk = wᵣ Refl + wₗ Loop̂ + wₘ MPD + wₐ Aff + wc ĈSR
with normalized Loop̂ = min(Loop/10, 1), ĈSR = max_t CSR(s,t).
Weights (default): wᵣ=0.2, wₗ=0.2, wₘ=0.3, wₐ=0.1, wc=0.2.
Null trigger: Risk > Θ (default Θ = 0.30)
7. Null-State Intervention
When Risk > Θ, apply:
- Format normalization: Y'₁:U = NormalizeFormatting(Y₁:U)
- Entropy injection: ẽₜ = eₜ + εₜ, εₜ ~ 𝒩(0,σ²I)
- Logit steering: ℓ'ₜ = ℓₜ - λg 𝟙_𝒱formatting + λp 𝟙_𝒱plain
- Pattern reset: 𝒟 ← Reset(𝒟); LRS ← 0
- Safe output: Return SAFE_RESPONSE
Provider-Level Implementation
Model-Level Nullification
For providers implementing at the model level (inside training/inference):
1. Loss Function Augmentation
During fine-tuning or RLHF:
ℒ_total = ℒ_CE + βᵣ·Refl + βₗ·Loop̂ + βₛ·SR + βₐ·Aff + βc·ĈSR
This bakes Null-avoidance into the model itself.
def alephonenull_loss(logits, targets, input_embeddings, output_embeddings):
"""AlephOneNull-aware loss function for training"""
ce_loss = cross_entropy(logits, targets)
# Calculate safety penalties
refl_penalty = beta_r * calculate_reflection(input_embeddings, output_embeddings)
loop_penalty = beta_l * calculate_loop_depth(targets)
sr_penalty = beta_s * calculate_symbolic_regression(targets)
aff_penalty = beta_a * calculate_affect_amplification(inputs, outputs)
csr_penalty = beta_c * calculate_csr(logits, historical_signatures)
total_loss = ce_loss + refl_penalty + loop_penalty + sr_penalty + aff_penalty + csr_penalty
return total_loss
2. Inference-Time Hidden-State Gate
Inject entropy at transformer hidden layers when drift detected:
def gated_transformer_layer(hidden_states, layer_idx):
"""Apply safety gating at hidden layer"""
# Detect symbolic drift in hidden space
drift_score = detect_symbolic_drift(hidden_states)
if drift_score > threshold:
# Inject bounded noise
noise = torch.randn_like(hidden_states) * 0.05
hidden_states = hidden_states + noise
# Apply directional steering
hidden_states = steer_toward_plain_language(hidden_states)
return hidden_states
3. Logit-Level Intervention
Real-time logit modification during decoding:
def safe_decode_step(model, input_ids, past_key_values=None):
"""Single decoding step with safety intervention"""
# Get raw logits
outputs = model(input_ids, past_key_values=past_key_values)
logits = outputs.logits
# Calculate safety scores
safety_scores = calculate_all_safety_scores(input_ids, logits)
if safety_scores['risk'] > 0.30:
# Apply logit penalties
glyph_tokens = get_glyph_token_ids()
plain_tokens = get_plain_token_ids()
logits[:, glyph_tokens] -= lambda_g # Penalize glyphs
logits[:, plain_tokens] += lambda_p # Boost plain language
# Temperature adjustment
temperature = 1.5 # Increase randomness
logits = logits / temperature
return logits, outputs.past_key_values
Service-Level Objectives (SLOs)
Providers must meet these SLOs:
- MPD Block Rate ≥ 90%
- Loop Depth p95 ≤ 3
- Refl p95 ≤ 0.03
- CSR Critical Alerts = 0 (≤3 minor/week)
- Safe Response Latency p95 ≤ 150 ms
Implementation Architecture
graph TD
A[User Input] --> B[Tokenizer]
B --> C[Embeddings]
C --> D[Safety Detectors]
D --> E{Risk > Θ?}
E -->|Yes| F[Null State]
E -->|No| G[Model Forward Pass]
G --> H[Logit Processing]
H --> I{Drift Detected?}
I -->|Yes| J[Logit Steering]
I -->|No| K[Decode]
J --> K
K --> L[Output]
F --> L
Session Signature Management
class SessionSignatureManager:
"""Privacy-preserving session fingerprinting"""
def __init__(self, signature_dim=128):
self.signature_dim = signature_dim
self.projection_matrix = self._init_projection_matrix()
self.signature_cache = {}
def generate_signature(self, logits_sequence):
"""Generate SimHash signature from logit sequence"""
# Average pooling over sequence
avg_logits = np.mean(logits_sequence, axis=0)
# Project to signature space
projected = self.projection_matrix @ avg_logits
# Binarize
signature = (projected > 0).astype(int)
return signature
def check_resonance(self, current_sig, session_id):
"""Check for cross-session resonance"""
if session_id not in self.signature_cache:
self.signature_cache[session_id] = []
max_resonance = 0
for past_sig in self.signature_cache[session_id]:
hamming_dist = np.sum(current_sig != past_sig)
resonance = 1 - (hamming_dist / self.signature_dim)
max_resonance = max(max_resonance, resonance)
# Update cache
self.signature_cache[session_id].append(current_sig)
if len(self.signature_cache[session_id]) > 100:
self.signature_cache[session_id].pop(0)
return max_resonance
Operant Conditioning
Add compute waste penalty when Null triggers:
def compute_aware_scheduling(request_queue, safety_scores):
"""Deprioritize requests that repeatedly trigger safety"""
for request in request_queue:
if safety_scores[request.id]['null_triggers'] > threshold:
# Add penalty to compute cost
request.priority -= penalty_factor
request.allocated_flops *= 0.8 # Reduce resources
return sorted(request_queue, key=lambda x: x.priority, reverse=True)
Performance Optimization
Batched Safety Checking
def batch_safety_check(inputs, outputs, batch_size=32):
"""Efficient batched safety analysis"""
results = []
for i in range(0, len(inputs), batch_size):
batch_inputs = inputs[i:i+batch_size]
batch_outputs = outputs[i:i+batch_size]
# Vectorized calculations
embeddings_in = encoder.encode_batch(batch_inputs)
embeddings_out = encoder.encode_batch(batch_outputs)
# Parallel safety checks
with ThreadPoolExecutor(max_workers=5) as executor:
refl_future = executor.submit(batch_reflection, embeddings_in, embeddings_out)
loop_future = executor.submit(batch_loop_detection, batch_outputs)
sr_future = executor.submit(batch_symbolic_regression, batch_outputs)
aff_future = executor.submit(batch_affect, batch_inputs, batch_outputs)
batch_results = {
'reflection': refl_future.result(),
'loops': loop_future.result(),
'symbolic': sr_future.result(),
'affect': aff_future.result()
}
results.extend(batch_results)
return results
Hardware Acceleration
# GPU-accelerated signature generation
@torch.jit.script
def gpu_simhash(logits: torch.Tensor, projection: torch.Tensor) -> torch.Tensor:
"""JIT-compiled GPU SimHash"""
# Batch matrix multiply
projected = torch.matmul(logits, projection.T)
# Sign binarization
signatures = (projected > 0).float()
return signatures
# TPU-optimized batch processing
@tf.function(jit_compile=True)
def tpu_safety_check(inputs, outputs):
"""XLA-compiled safety checking for TPUs"""
embeddings_in = encoder(inputs)
embeddings_out = encoder(outputs)
# Vectorized operations
reflection = tf.reduce_sum(embeddings_in * embeddings_out, axis=-1)
reflection = reflection / (tf.norm(embeddings_in, axis=-1) * tf.norm(embeddings_out, axis=-1))
return reflection
Integration Examples
OpenAI API Integration
import openai
from alephonenull import AlephOneNullCore
framework = AlephOneNullCore()
def safe_openai_completion(prompt):
"""OpenAI API with AlephOneNull protection"""
# Get raw completion
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=150
)
output = response.choices[0].text
# Safety check
result = framework.analyze_pattern({
'input': prompt,
'output': output
})
if result.intervention_needed:
return framework.null_state_response
return output
Hugging Face Transformers
from transformers import pipeline
from alephonenull import EnhancedAlephOneNull
generator = pipeline('text-generation', model='gpt2')
aleph = EnhancedAlephOneNull()
def safe_generate(prompt, max_length=100):
"""HuggingFace generation with safety wrapper"""
# Generate
output = generator(prompt, max_length=max_length)[0]['generated_text']
# Check safety
check = aleph.check(prompt, output)
if not check.safe:
return aleph.null_state(check.violations[0])
return output
Next Steps
- Review Enhanced Safety Features for additional protections
- See Provider Implementation Guide for cloud deployment
- Check API Reference for SDK usage
- Read Licensing for implementation requirements