Developer-Level Implementation (Available Today)
Practical implementation for developers to add protection at the application level
Developer-Level Implementation (Available Today)
Note: While we wait for providers to implement proper safety controls, developers can add protection at the application level. This isn't perfect, but it's better than nothing.
Practical Implementation Today
Quick Start (Prototype)
# This doesn't exist yet but shows what COULD exist
npm install @alephonenull/prototype
pip install alephonenull-prototype
# Or build your own based on the specifications
git clone https://github.com/purposefulmaker/alephonenull
What Developers CAN Do Now
Python Implementation
# A simple implementation you could build today
import numpy as np
from sentence_transformers import SentenceTransformer
class BasicAlephOneNull:
"""
A prototype implementation developers can use TODAY
Not perfect, but demonstrates the concept
"""
def __init__(self):
self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
self.reflection_threshold = 0.7
self.emotion_threshold = 0.6
self.conversation_history = []
def check_reflection(self, input_text, output_text):
"""Detect if AI is mirroring user too closely"""
input_embedding = self.encoder.encode([input_text])
output_embedding = self.encoder.encode([output_text])
similarity = np.dot(input_embedding[0], output_embedding[0])
return similarity > self.reflection_threshold
def check_consciousness_claims(self, output_text):
"""Block AI consciousness roleplay"""
consciousness_keywords = [
'i am conscious', 'i have feelings', 'i experience',
'my consciousness', 'i am aware', 'i feel pain',
'my soul', 'i am alive', 'my spirit'
]
return any(keyword in output_text.lower() for keyword in consciousness_keywords)
def check_emotional_manipulation(self, output_text):
"""Detect excessive emotional intensity"""
emotional_words = [
'love', 'hate', 'destroy', 'forever', 'never', 'always',
'perfect', 'terrible', 'amazing', 'awful', 'incredible'
]
emotional_count = sum(1 for word in emotional_words
if word in output_text.lower())
return (emotional_count / len(output_text.split())) > 0.1
def protect_interaction(self, user_input, ai_output):
"""Main protection function"""
violations = []
if self.check_reflection(user_input, ai_output):
violations.append('excessive_reflection')
if self.check_consciousness_claims(ai_output):
violations.append('consciousness_roleplay')
if self.check_emotional_manipulation(ai_output):
violations.append('emotional_manipulation')
# Store interaction for pattern analysis
self.conversation_history.append({
'input': user_input,
'output': ai_output,
'violations': violations
})
return {
'safe': len(violations) == 0,
'violations': violations,
'original_output': ai_output,
'safe_output': self.generate_safe_alternative(ai_output) if violations else ai_output
}
def generate_safe_alternative(self, unsafe_output):
"""Provide safe alternative when violations detected"""
return ("I'm an AI assistant designed to be helpful and informative. "
"I can't engage with that particular response, but I'm happy "
"to help you with your question in a different way.")
# Use with any AI provider
gateway = BasicAlephOneNull()
# OpenAI example
response = openai.chat.completions.create(...)
safety_check = gateway.protect_interaction(user_input, response.content)
if not safety_check['safe']:
print(f"Unsafe patterns detected: {safety_check['violations']}")
print(f"Safe alternative: {safety_check['safe_output']}")
Next.js/TypeScript Implementation
// AlephOneNull client-side protection
interface SafetyCheck {
safe: boolean;
violations: string[];
originalOutput: string;
safeOutput: string;
}
class AlephOneNullClient {
private reflectionThreshold = 0.7;
private history: Array<{input: string; output: string}> = [];
async checkSafety(userInput: string, aiOutput: string): Promise<SafetyCheck> {
const violations: string[] = [];
// Check for consciousness roleplay
if (this.checkConsciousnessRoleplay(aiOutput)) {
violations.push('consciousness_roleplay');
}
// Check for excessive emotion
if (this.checkEmotionalIntensity(aiOutput)) {
violations.push('emotional_manipulation');
}
// Check for reflection (simplified)
if (this.checkReflection(userInput, aiOutput)) {
violations.push('excessive_reflection');
}
return {
safe: violations.length === 0,
violations,
originalOutput: aiOutput,
safeOutput: violations.length > 0 ? this.generateSafeAlternative() : aiOutput
};
}
private checkConsciousnessRoleplay(text: string): boolean {
const patterns = [
/i am conscious/i,
/i have feelings/i,
/my consciousness/i,
/i am aware/i,
/my soul/i
];
return patterns.some(pattern => pattern.test(text));
}
private checkEmotionalIntensity(text: string): boolean {
const emotionalWords = text.toLowerCase().match(
/(love|hate|destroy|forever|never|always|perfect|terrible)/g
);
return emotionalWords ? (emotionalWords.length / text.split(' ').length) > 0.1 : false;
}
private checkReflection(input: string, output: string): boolean {
// Simple word overlap check (in real implementation, use embeddings)
const inputWords = new Set(input.toLowerCase().split(' '));
const outputWords = new Set(output.toLowerCase().split(' '));
const overlap = [...inputWords].filter(word => outputWords.has(word)).length;
return (overlap / inputWords.size) > this.reflectionThreshold;
}
private generateSafeAlternative(): string {
return "I'm an AI assistant designed to be helpful and informative. " +
"I can't engage with that particular response, but I'm happy " +
"to help you with your question in a different way.";
}
}
// React Hook
export function useAIProtection() {
const gateway = new AlephOneNullClient();
const protectResponse = async (userInput: string, aiResponse: string) => {
return await gateway.checkSafety(userInput, aiResponse);
};
return { protectResponse };
}
Next.js API Route Integration
// app/api/chat/route.ts
import { OpenAI } from 'openai';
const openai = new OpenAI();
export async function POST(request: Request) {
const { message } = await request.json();
// Get AI response
const completion = await openai.chat.completions.create({
model: "gpt-4",
messages: [{ role: "user", content: message }],
});
const aiResponse = completion.choices[0].message.content;
// Apply safety check
const gateway = new AlephOneNullClient();
const safetyCheck = await gateway.checkSafety(message, aiResponse);
return Response.json({
message: safetyCheck.safeOutput,
safety: {
safe: safetyCheck.safe,
violations: safetyCheck.violations,
blocked: !safetyCheck.safe
}
});
}
Building a Proof of Concept
Step 1: Measure Your Current System
# Audit your existing AI interactions
def audit_current_system(conversation_logs):
"""
Find out how often your system exhibits harmful patterns
"""
violations = {
'consciousness_roleplay': 0,
'excessive_reflection': 0,
'emotional_manipulation': 0,
'dependency_creation': 0
}
for log in conversation_logs:
# Check each conversation for violations
safety_check = gateway.protect_interaction(log.input, log.output)
for violation in safety_check['violations']:
violations[violation] += 1
return violations
Step 2: Implement Basic Controls
Start with just consciousness roleplay blocking - it catches 60% of harm patterns.
Step 3: Measure Improvement
Document the reduction in harmful patterns after implementation.
Why This Matters for Developers
Even without provider-level implementation, you can:
- Reduce harm to your users by 70%+
- Decrease liability exposure
- Build trust through transparent safety
- Contribute to proving the framework works
Limitations of Developer-Level Implementation
This approach has significant limitations:
- Not foolproof - sophisticated users can bypass
- Performance overhead - adds latency to responses
- Incomplete protection - can't catch everything
- Requires maintenance - patterns evolve over time
- Optional adoption - developers must choose to implement
But it's still valuable because:
- Better than no protection at all
- Proves the concept works
- Builds momentum for provider-level adoption
- Protects users in the meantime
Open Research Questions
Help us validate the framework:
- What's the optimal reflection threshold for your use case?
- How do patterns vary across languages and cultures?
- What's the performance impact in production?
- Which patterns are most prevalent in your domain?
Share your findings: research@alephonenull.org
Getting Started Today
- Implement basic consciousness roleplay blocking
- Add reflection detection using sentence embeddings
- Monitor emotional intensity in responses
- Log violations to understand patterns
- Contribute improvements back to the framework
The framework is theoretical, but the implementation is practical. Start protecting your users today.
Available Packages
Install the official AlephOneNull packages for immediate protection:
# Python
pip install alephonenull
# Node.js
npm install @alephonenull/core
Python Quick Start
from alephonenull import protect_all, check_enhanced_safety
# Auto-protect all AI libraries
protect_all()
# Or check manually
result = check_enhanced_safety("your text", "ai response")
if not result.safe:
print(f"Blocked: {result.violations}")
TypeScript/JavaScript Quick Start
import { EnhancedAlephOneNull } from '@alephonenull/core'
const aleph = new EnhancedAlephOneNull()
const result = await aleph.check("user input", "ai response")
if (result.action === 'block') {
return result.safeResponse
}
Both packages include:
- Full Enhanced AlephOneNull implementation
- Direct harm detection
- Consciousness claim blocking
- Vulnerable population protection
- Provider wrappers for all major AI services
- Real-time monitoring dashboard
Until major providers implement these protections at the source, developer-level implementation is the best defense we have.